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Abstract 
 
A 3-D hydrodynamic dispersion model for tracer transport is developed and implemented into 
the TOUGH2 EOS3 (T2R3D) module.  The model formulation incorporates a full dispersion 
tensor, based on a 3-D velocity field with a 3-D, irregular grid in a heterogeneous geological 
system.  Two different weighting schemes are proposed for spatial average of 3-D velocity 
fields and concentration gradients to evaluate the mass flux by dispersion and diffusion of a 
tracer or a radionuclide.  This new module of the TOUGH2 code is designed to simulate 
processes of tracer/radionuclide transport using an irregular, 3-D integral finite difference grid 
in non-isothermal, three-dimensional, multiphase, porous/fractured subsurface systems.  The 
numerical method for this transport module is based on the integral finite difference scheme, as 
in the TOUGH2 code.  The major assumptions of the tracer transport module are:  (a) a tracer or 
a radionuclide is present and transported only within the liquid phase,  (b) transport mechanisms 
include molecular diffusion and hydrodynamic dispersion in the liquid phase in addition to 
advection, and (c) first order decay and linear adsorption on rock grains are taken into account.  
The tracer or radionuclide is introduced as an additional mass component into the standard 
TOUGH2 formulation, time is discretized fully implicitly, and non-linearities of the 
conservation equations are handled using the Newton/Raphson iteration.  We have verified this 
transport module by comparison with results of a 2-D transport problem for which an analytical 
solution is available. In addition, a field application is described to demonstrate the use of the 
proposed model. 
 
Introduction 
 
It has been a challenge to simulate transport of a tracer in porous media using a general 3-D, 
irregular grid with a numerical method.  One of the difficulties in solving advection-diffusion 
type transport equations is how to approximate the dispersion tensor in order to estimate the 
dispersive terms of mass transport accurately.  Most of numerical modeling approaches in the 
literature (e.g., Huyakorn and Pinder, 1983; Oldenburg and Pruess, 1997) use numerical 
schemes that are based on regular grids with finite element or finite difference spatial 
discretization.  However, it may be impractical to use a regular grid in conducting modeling 
studies in many field applications.   One of such examples is the site-scale modeling study on 
tracer or radionuclide transport at Yucca Mountain, Nevada, a potential underground 
radioactive waste repository, in which a irregular 3-D grid has to be used (Bodvarsson et al., 
1997) for the large, complex geological system there. 
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We have developed a 3-D hydrodynamic dispersion model for tracer transport and implemented 
the model into the TOUGH2 code (Pruess, 1991).  The model formulation incorporates a full 
dispersion tensor, based on a 3-D velocity field with a 3-D, irregular, integral finite difference 
grid in a heterogeneous geological system.  Two different weighting schemes are proposed for 
spatially averaging 3-D fluid flow velocity and tracer concentration gradients.  It takes account 
of the physical processes of tracer transport in a non-isothermal, multi-phase, multi-dimensional 
flow environment in the subsurface.  The treatment of water, air and heat flow is identical to 
that of the standard TOUGH2 module (Pruess, 1991).  The major assumptions for the tracer 
transport module(T2R3D):  include (a) a tracer exists and is transported only within the liquid 
phase;  (b) transport mechanisms considered are molecular diffusion and hydrodynamic 
dispersion in the liquid phase in addition to advection terms; (c) first order decay is taken into 
account; and (d) adsorption of a tracer on the rock matrix is described by an equilibrium 
isotherm with a constant distribution coefficient.  
 
In this paper, we will present the model formulation proposed for determining 3-D 
hydrodynamic dispersion coefficients with irregular grids. Also a verification sample is given in 
which the transport module is examined with results of a 2-D transport problem for which an 
analytical solution is available.  The proposed model has been used in the field studies of tracer 
and radionuclide transport at the Yucca Mountain site. 
 
 
Model Formulation 
 
The basic mass and thermal energy balance equations solved by T2R3D are the same in form as 
those by the standard TOUGH2 module (Pruess, 1991).  The difference is that T2R3D 
introduces an additional component, a tracer/radionuclide.  Therefore, the total number of mass 
components in T2R3D is three, with component #1 = water, #2 = air, and #3 = tracer or 
radionuclide.  In terms of the integral formulation, the conservation of mass and thermal energy 
is described (Pruess, 1991) by 

 
d

dt
∫
nV

(κ )M dV = ∫
nΓ

(κ )
F • n dΓ + ∫

nV

(κ )
q dV  (1) 

 
The integration here is over an arbitrary subdomain Vn of the flow system under study, which is 
bounded by the closed surface Γn.  The quantity M appearing in the accumulation term denotes 
mass or energy per unit volume, with κ = 1(air), κ = 2(water) and κ = 3(tracer)  labeling the 
mass components, and κ = 4 for “heat component.  F is a general “flow” term including Darcy’s 
flow, mass advection/diffusion and heat convection/conduction transfer, and q is a sink/source 
term. 
 
The general form of the mass accumulation term is 
 

  (2) (κ)M = φ βS ρβ β
(κ )X

β=1

ΝΡΗ

∑
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The total mass of component κ is obtained by summing over all fluid phases β = 1 (gas) and 2 
(liquid).  Sβ is the saturation (volume fraction) of phase β, ρβ is density of phase β, and  is 

the mass fraction of component κ present in phase β. 
β
(κ )Χ

 
The heat accumulation term is defined as 

  (3) TC RuSM R
)( ρφρφ

β
ββ

β )1(
2

1

4 −= ∑ +
=

where  uβ  is internal energy of fluid phase β ,  CR  is specific heat of rock, ,  ρR  is density of 
rock and T is reservoir temperature. 
 
The mass flux term of components is a sum over the phases 

  (4) 
F(κ ) = Xβ

(κ )

β=1

NPH

∑ Fβ

for κ = 1, 2 and 3.  Individual phase mass fluxes are given by a multi-phase version of Darcy’s 
law: 

 ( gF βββ
β

β
β ρρ

µ
−−= P

k
k r )  (5) 

Here k tensor is absolute permeability tensor, krβ is relative permeability of phase β, µβ is 
viscosity of phase β, and 

  (6) Pβ = P + Pc,β

is the pressure in phase β, which is the sum of the pressure P of a reference phase, and the 
capillary pressure (Pcβ) of phase β relative to the reference phase.  g denotes the vector of 
gravitational  acceleration.   
 
The heat flux is given by  
 

  (7) 
β

β
βFF ∑

=
+∇−=

2

1
h)4( TK th

where Kth is thermal conductivity of the formation, hβ is the specific enthalpy of phase β.  
 
 
The mass flux term for the tracer/radionuclide component in the liquid phase is described by 
 

                                                     )      (8) ( ) ( ) (333
DA FFF +=

 
where the first term on the right-hand side is mass flux by advection,  defined as 

 3 



 
                                                    (9) ( ) ( )

ββ FF 33 XA =

 
The phase mass flux Fβ (β = liquid) in (9) is given in Equation (5) by Darcy’s law, and  is 

the mass fraction of a tracer/radionuclide in the liquid phase.   
X (3)

β

 
The second term on the right-hand side of (9) is the dispersive and diffusive mass flux, defined 
as 
 
                                   ( ) ( )33

ββρ XDD ∇•−=F      (β=liquid)                 (10) 
 
where D is the combined diffusion-dispersion tensor accounting for both molecular diffusion 
and hydradynamicc dispersion.  We have incorporated a general dispersion model for 3-D tracer 
transport into the T2R3D code (Scheidegger, 1961), 
 

                             D = αT vβ δ ij + α L − αT( )
vβvβ

vβ

+φSβτdmδij  (β=liquid)                 (11) 

 
where αT and αL  are the transverse and longitudinal dispersivities, respectively; vβ is the 
Darcy’s velocity vector of phase β; τ is the tortuosity of the medium; dm  is the molecular 
diffusion coefficient in phase β;  and δij is the Kroneker delta function. (δij=1 for i=j, and δij=0 
for i≠j) 
 
The treatment of adsorption and first-order decay effects in T2R3D follows the work by 
Oldenburg and Pruess (1995) using the integral finite difference formulation.  The mass 
accumulation term including adsorbed tracer/radionuclide on the rock matrix is  
 
                                           M κ( ) = φSβρβXβ

κ( ) + 1− φ( )ρ RρβXβ
κ( )Kd                  (12) 

 
where Kd is the distribution coefficient of the tracer/radionuclide partitioning between the 
aqueous phase and rock grains. 
 
The first-order decay of a tracer/radionuclide is handled using the integral-finite-difference-
discretized equation (Pruess, 1991; Oldenburg and Pruess, 1995), 
 

                                                  
M n

k,k+1 1 + λκ ∆t( )− M n
k,k =

∆t
Vn

AnmFnm
k,k+1 + Vnqn

k,k+1

m
∑

 
 
 

  

 
 
 

      (13) 
 
where subscript n denotes a grid block n;  λκ  is the radioactive decay constant of the 
radionuclide (component  κ=3), and is defined as 
 
                                                                             λκ = ln(2)

1 /2T
                                     (14) 
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with T1/2 being the half-life of the tracer/radionuclide component. 
 
One of the key issues in implementing the general 3-D dispersion tensor of (11) into T2R3D is 
how to average velocity fields for determining the dispersion tensor.  We have adopted a spatial 
and harmonic weighting scheme to evaluate a velocity vector at the interfaces between element 
blocks, as shown in Figure 1.  In Figure 1, Vm and Vn are the volume blocks m (neighboring) 
and n.  Anm is the area of the interface between the two blocks, Dm and Dn are the distances from 
the interface to each block’s center, and vm and vn are the fluid velocities at the center of each 
block, while v is the velocity of liquid at the interface between blocks.  n is the unit vector at the 
connection between the two blocks along connection nm, with a component ni (i=x,y,z), or 
directional cosines,  in the x-, y-, or z-direction, respectively.  Also the positive direction of n is 
defined as the direction from the block center of Vm toward the block center of Vn, as shown in 
Figure 1.  In addition, all three velocity vectors, vn  ,  vm , and v, and the connection-direction 
vector, n , are relative to the global coordinate system of (x, y, z). 
 
First we need to convert the local fluxes along connections in the local coordinates to a velocity 
vector, vn , in the system of global coordinates (x, y, z) at the block center for each block of the 
grid.  The averaging or weighting scheme used is called “projected area weighting method”, in 
this method a velocity component, vn,i , of the vector vn is determined by the vectorial 
summation of the flow components of all local connection vectors in the same direction, 
weighted by the projected area in that direction, 

                                              vn,i =
(Anm ni )(vnmni

m
∑ )

(Anm ni )
m
∑

        (i=x,y,z)                         (15) 

 
     
where m is the total number of connections between element Vn  and all its neighboring 
elements Vm, and vnm  is the flux along connection nm in the local coordinate system.  In 

Equation (15),  the term, (A nnm i )
)

,  is the projected area of the interface Anm on to the direction 

i (i=x,y,z) of the global coordinate system, and (  gives the velocity component in the 
direction i of the global coordinate system, contributed by the local flux v

v nnm i
nm between blocks Vn  

and Vm .  Also it should be mentioned that the absolute value for the directional cosines, ni , are 
used for evaluating the projected area in Equation (15), because only the positive areal values 
are needed for the weighting scheme.  
 
The velocity vector v at the interface of elements n and m is evaluated by harmonic weighting 
by the distances to the interface using the velocities at the block centers of the two elements, 
 

                                        
  

Dn + Dm

vi

=
Dn

vn,i

+
Dm

vm,i

   (i= x, y, z)      (16) 

 
for its component vi.  Harmonic weighting is here used because it preserves total transit time for 
solute transport travelling between the two blocks.  
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The fluid flow velocity v or vβ , determined by equation (16), is used in Equation (11) to 
evaluate the dispersion tensor along the connection of the two elements of m and n. 
 
On the other hand, the concentration or mass fraction gradient of the tracer/radionuclide is 
evaluated, based on the “interface area weighting scheme”.  The mass fraction gradient, a 
vector, at element n is given by an areal weighting scheme: 
 

                                                    ∇Xn
κ( ) =

Anm∇Xnm
κ( )

m
∑

Anm
m
∑

 (κ=3)   (17) 

 
where  is the mass fraction gradient of a tracer/radionuclide along connection nm in the 
global coordinate system, evaluated by 

∇Xnm
κ( )

 
 
                                                 ( ) ( ) ( ) ( )( )κκκκ

nmznmynmxnm XnXnXn ∆∆∆= ,,X∇    (18) 

 
with 

                                                                    ∆X nm
κ( ) =

Xm
κ( ) − X n

κ( )

Dm + D n

   (19) 

 
The reason behind the interface area weighting method is that the dispersive fluxes between all 
the connected elements are directly proportional to the interface areas, therefore a local 
concentration gradient with a larger connected interface area should take more weight in the 
resultant gradient at the block. 
 
Once two mass fraction gradients at the two blocks m and n are determined, the mass fraction 
gradient ∇X at the interface between two blocks is evaluated by a linear interpolation for its 
component i (i=x, y, z), 
 
  

                                 ∇Xi
κ( ) = mD

mD + nD
∇X n,i

κ( ) + nD
mD + nD

∇Xm ,i
κ( )                    (20) 

 
This mass fraction gradient of (20) will be used to calculate the total diffusive and dispersive 
mass flux of a tracer/radionuclide along the connection of the two elements. 
 
The net mass flux of diffusion and dispersion of a tracer/radionuclide along the connection of 
elements Vn and Vm is determined by 
 
                                               ( ) ( ) ( )[ ]κ

ββ
κκ ρ XDF Dnm ∇••−=•= nFn                                                  (21) 

 
Finally, the diffusive and dispersive flux of Equation (21) is added to the total flux term of 
Equation (8) for the tracer/radionuclide component along the connection of the two elements, 
which contributes the flow term for the tracer/radionuclde component in the conservation 
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equation of (1) or (13).  It should be mentioned that incorporation of (21) into (13) gives rise to 
extra terms in the Jacobian matrix in addition to those contributed by only two advectively-
connected blocks.  These additional Jacobian terms have been ignored in the present model, 
because so far we have not observed problems with convergence rates using the incomplete 
Jacobian for weakly-coupled tracer transport problems.  However, convergence rates may 
deteriorate in strongly-coupled or large distpersive transport situations, even though converged 
solutions are still correct. 
 

Verification Example 
 
In order to examine the accuracy of approximation of the formulation discussed above in 
handling transport in a multi-dimensional domain with hydrodynamic dispersion and molecular 
diffusion effects, we have checked the numerical solutions against several analytical solutions 
(Wu et al., 1996).  One of those verification samples is discussed in this section and the problem 
is similar to the one used by Oldenburg and Pruess (1993). The problem concerns two-
dimensional transport of a radionuclide in a homogenous isotropic, saturated porous medium.  
The model domain is rectangular, as shown in Figure 2.  There is a steady-state, one-
dimensional flow field along the x-direction with pore velocity of 0.1 m/day in the domain.  A 
tracer/radionuclide is introduced along a line source of length of 0.5 meter at x=0 with a 
constant concentration.  Transport starts at t=0 from the line source by advection, hydraulic 
dispersion and diffusion.  An analytical solution for this problem is provided by Javandel et al. 
(1984) along with a code for calculating the 2-D concentrations.  The analytical solution is used 
here to verify the T2R3D numerical solution. 
 
The T2R3D solution of this problem is accomplished by specifying on both the upstream 
boundary (x=0) and downstream boundary (x=6 m) a constant pressure, which gives rise to a 
steady-state flow field of 0.1 m/day flow velocity.  Also, in the T2R3D simulation, a uniform 
grid spacing was used for both x and y directions with ∆x = ∆y = 0.1 m.  The system is kept at 
single liquid-phase and isothermal conditions.  Air mass fraction is set to zero and a constant 
temperature of 25 oC is specified.  Also no decay or adsorption effects are included in the 
simulation.  The properties used in the comparison study are:  porosity φ = 1, tortuosity τ = 1, 
molecular diffusion coefficient Dm = 1.0 × 10-10 m2/s, longitudinal dispersivity αL is 0.1 m, and 
transverse dispersivity αT is 0.025 m.  The liquid properties are internally generated by the 
code.  The initial and boundary conditions for the radionuclide are:  initially there is no 
radionuclide in the system;  Xradionuclide =1.0×10-5 along the 0.5 m line source;  and Xradionuclide = 
0 at the downstream boundary (x=6 m) at all times.  
Figure 1 Schematic of spatial averaging scheme for velocity fields in the integral finite 
difference method. 
 
 
Figure 2 Schematic of the 2-D domain the 2-D radionuclide transport problem showing 
the velocity field and three cross sections for comparisons with the simulations results. 
 
Figure 3 Comparison of radionuclide concentration profiles along cross section (A-A’) 
from analytical and numerical solutions at t=20 days. 
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Figure 4 Comparison of radionuclide concentration profiles along cross section (B-B’) 
from analytical and numerical solutions at t=20 days. 
 
Figure 5 Comparison of radionuclide concentration profiles along cross section (C-C’) 
from analytical and numerical solutions at t=20 days. 
 
 
 
 
Comparison of the normalized radionuclide concentrations along the three cross-sections of the 
rock column from the T2R3D and the analytical solution are shown in Figures 3, 4, and 5 for 
time= 20 days, respectively.  The figures indicate that the T2R3D simulated concentration 
profiles in the two-dimensional domain are in good agreement with the analytical solution.  
Figure 3 shows the radionuclide profile at y=0.15 m (cross section A-A’ in Figure 2), 
indicating an excellent agreement between the two solutions along this cross section.  Figure 4 
shows the concentration profile at y = 0.75 m, just below the line source which extends from y 
= 0 to y = 0.5 m, and this figure displays both longitudinal and transverse dispersion effects.  
As can be seen in Figure 4, the comparison is good even though small numerical errors are 
introduced in the numerical solution.  Figure 5 gives the comparison of concentration profiles 
along the transverse direction (C-C’) at x = 2 m, indicating an excellent agreement between the 
analytical and numerical solutions at this location.  
 
 
Field Application 
 
A field application example of the T2R3D module is provided in this section, and the problem 
concerns the unsaturated zone transport of environmental isotopic tracers at Yucca Mountain 
(Fairley and Wu, 1997).   Field studies of environmental isotopic tracers at Yucca Mountain 
have revealed the presence of fast pathways for moisture flow from the land surface to the 
proposed repository horizon (several hundreds of meters deep), and water traveling time is 
estimated as less than 40 years because of detection of significant quantities of tritium, 36Cl, or 
99Tc (Fabryka-Martin et al., 1996; Yang et al., 1996).  Here T2R3D is used to attempt to 
quantify when pathways form, and under what conditions they may be detectable.  The tracer 
data, the 36Cl/cl ratios, are the most complete isotopic measurements at the site and were 
chosen for the present study. 
 
A two-dimensional vertical cross section, irregular grid was generated to model the tracer 
transport, and the detailed information of the input parameters, model grid and boundary 
conditions were discussed by Fairley and Wu (1997).  The top boundary of the 2-D model is 
the land surface and the bottom is on the regional water table.  The entire unsaturated zone 
formation consists of fractured/matrix rocks, and the fracture/matrix interactions were treated 
using the dual-permeability modeling approach.  Both steady state and transient simulations 
have been conducted to look at the tracer transport phenomena at the site, and are shown 
Figures 6 and 7.  Figure 6 shows the steady-state distributions of 36Cl concentrations at the 
mountain, indicating a relative uniform downward penetration of the chloride.  Figure 7 gives 
the results of the transient simulations, and shows a much deep travel distance or a fast 
pathway at one location.  This location corresponds to a fault structure at the site.  Model 
simulation results indicate that fast pathways probably arise from rapidly transient infiltration 
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events, and are associated with structural discontinuities of one of the hydrogeologic units of 
the formation.  Fast flow pathways at the site are likely to carry only a small fraction of the 
total percolation flux. 
 
 
Figure 6 Steady state simulations of 36Cl isotope transport in the unsaturated zone of 
Yucca Mountain. 
 
 
Figure 7 Transient simulations of 36Cl isotope transport in the unsaturated zone of Yucca 
Mountain. 
 
 
 
Summary 
 
We have presented a 3-D hydrodynamic dispersion model for tracer transport and implemented 
it into the TOUGH2 code as a new (T2R3D) module.  The model formulation incorporates a full 
dispersion tensor using a 3-D, irregular grid in a heterogeneous geological system.  Two 
physically-based weighting schemes were proposed for spatial average of 3-D velocity fields 
and concentration gradients, respectively, to evaluate the mass flux by dispersion and diffusion 
of a tracer or a radionuclide.   The new transport module of the TOUGH2 code has been 
verified by comparison with results of a 2-D analytical solution.  Application of the new 
TOUGH2 module to the site-scale modeling studies of environmental isotopic tracer transport 
at Yucca Mountain has provided some insights into moisture flow and tracer transport at the 
site. 
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